हिंदी

Passes Through the Point of Intersection of the Lines X + Y = 3 and 2x − 3y = 1 and is Parallel to X − Y − 6 = 0, Find a and B. - Mathematics

Advertisements
Advertisements

प्रश्न

If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.

संक्षेप में उत्तर

उत्तर

The given lines are x + y = 3 and 2x − 3y = 1.
x + y − 3 = 0       ... (1)
2x − 3y − 1 = 0    ... (2)
Solving (1) and (2) using cross-multiplication method:

\[\frac{x}{- 1 - 9} = \frac{y}{- 6 + 1} = \frac{1}{- 3 - 2}\]

\[ \Rightarrow x = 2, y = 1\]

Thus, the point of intersection of the given lines is (2, 1).
It is given that the line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through (2, 1).

\[\therefore \frac{2}{a} + \frac{1}{b} = 1\]    ... (3)

It is also given that the line \[\frac{x}{a} + \frac{y}{b} = 1\]  is parallel to the line x − y − 6 = 0.

Hence, Slope of \[\frac{x}{a} + \frac{y}{b} = 1\]

\[\Rightarrow y = - \frac{b}{a}x + b\]  is equal to the slope of x − y − 6 = 0 or, y = x − 6 

\[\therefore - \frac{b}{a} = 1\]

\[\Rightarrow b = - a\]            ... (4)

From (3) and (4): \[\frac{2}{a} - \frac{1}{a} = 1 \Rightarrow a = 1\]

From (4):
b = −1
∴ a = 1, b = −1

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.1 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.1 | Q 10 | पृष्ठ ७८

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×