हिंदी

Find the Length of the Perpendicular from the Origin to the Straight Line Joining the Two Points Whose Coordinates Are (A Cos α, a Sin α) and (A Cos β, a Sin β). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).

संक्षेप में उत्तर

उत्तर

Equation of the line passing through (acosα, asinα) and (acosβ, asinβ) is

\[y - asin\alpha = \frac{asin\beta - asin\alpha}{acos\beta - acos\alpha}\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = \frac{sin\beta - sin\alpha}{cos\beta - cos\alpha}\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = \frac{2\cos\left( \frac{\beta + \alpha}{2} \right)\sin\left( \frac{\beta - \alpha}{2} \right)}{2\sin\left( \frac{\beta + \alpha}{2} \right)\sin\left( \frac{\alpha - \beta}{2} \right)}\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = - \cot\left( \frac{\beta + \alpha}{2} \right)\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = - \cot\left( \frac{\alpha + \beta}{2} \right)\left( x - acos\alpha \right)\]

\[\Rightarrow x\cot\left( \frac{\alpha + \beta}{2} \right) + y - asin\alpha - acos\alpha \cot\left( \frac{\alpha + \beta}{2} \right) = 0\]

The distance of the line from the origin is

\[d = \left| \frac{- asin\alpha - acos\alpha \cot\left( \frac{\alpha + \beta}{2} \right)}{\sqrt{\cot^2 \left( \frac{\alpha + \beta}{2} \right) + 1}} \right|\]

\[ \Rightarrow d = \left| \frac{asin\alpha + acos\alpha \cot\left( \frac{\alpha + \beta}{2} \right)}{\sqrt{{cosec}^2 \left( \frac{\alpha + \beta}{2} \right)}} \right| \left( \because {cosec}^2 \theta = 1 + \cot^2 \theta \right)\]

\[\Rightarrow d = a\left| \sin\left( \frac{\alpha + \beta}{2} \right)sin\alpha + cos\alpha \cos\left( \frac{\alpha + \beta}{2} \right) \right| \]

\[ \Rightarrow d = a\left| sin\alpha \sin\left( \frac{\alpha + \beta}{2} \right) + cos\alpha \cos\left( \frac{\alpha + \beta}{2} \right) \right| \]

\[ \Rightarrow d = a\left| \cos\left( \frac{\alpha + \beta}{2} - \alpha \right) \right| = a\cos\left( \frac{\beta - \alpha}{2} \right) = a\cos\left( \frac{\alpha - \beta}{2} \right)\]

Hence, the required distance is \[a\cos\left( \frac{\alpha - \beta}{2} \right)\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.15 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.15 | Q 3 | पृष्ठ १०७

संबंधित प्रश्न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + b, a − b)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×