Advertisements
Advertisements
प्रश्न
Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.
उत्तर
The equation of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) is given below:
\[y - sin\theta = \frac{sin\phi - sin\theta}{cos\phi - cos\theta}\left( x - cos\theta \right)\]
\[ \Rightarrow \left( cos\phi - cos\theta \right)y - sin\theta\left( cos\phi - cos\theta \right) = \left( sin\phi - sin\theta \right)x - \left( sin\phi - sin\theta \right)cos\theta\]
\[ \Rightarrow \left( sin\phi - sin\theta \right)x - \left( cos\phi - cos\theta \right)y + sin \theta \ cos\phi - sin\phi \ cos\theta = 0\]
Let d be the perpendicular distance from the origin to the line \[\left( sin\phi - sin\theta \right)x - \left( cos\phi - cos\theta \right)y + sin\theta \ cos\phi - sin\phi \ cos\theta = 0\]
\[\therefore d = \left| \frac{sin\theta cos\phi - sin\phi cos\theta}{\sqrt{\left( sin\phi - sin\theta \right)^2 + \left( cos\phi - cos\theta \right)^2}} \right|\]
\[ \Rightarrow d = \left| \frac{\sin\left( \theta - \phi \right)}{\sqrt{\sin^2 \phi + \sin^2 \theta - 2sin\phi sin\theta + \cos^2 \phi + \cos^2 \theta - 2\cos\phi cos\theta}} \right|\]
\[ \Rightarrow d = \left| \frac{\sin\left( \theta - \phi \right)}{\sqrt{\sin^2 \phi + \cos^2 \phi + \sin^2 \theta + \cos^2 \theta - 2\cos\left( \theta - \phi \right)}} \right|\]
\[ \Rightarrow d = \frac{1}{\sqrt{2}}\left| \frac{\sin\left( \theta - \phi \right)}{\sqrt{1 - \cos\left( \theta - \phi \right)}} \right|\]
\[\Rightarrow d = \frac{1}{\sqrt{2}}\left| \frac{\sin\left( \theta - \phi \right)}{\sqrt{2 \sin^2 \left( \frac{\theta - \phi}{2} \right)}} \right| \]
\[ \Rightarrow d = \frac{1}{\sqrt{2} \times \sqrt{2}}\left| \frac{\sin\left( \theta - \phi \right)}{\sin\left( \frac{\theta - \phi}{2} \right)} \right| = \frac{1}{2}\left| \frac{2\sin\left( \frac{\theta - \phi}{2} \right)\cos\left( \frac{\theta - \phi}{2} \right)}{\sin\left( \frac{\theta - \phi}{2} \right)} \right|\]
\[ \Rightarrow d = \cos\left( \frac{\theta - \phi}{2} \right)\]
Hence, the required distance is \[\cos\left( \frac{\theta - \phi}{2} \right)\].
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\] from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Determine the distance between the pair of parallel lines:
8x + 15y − 34 = 0 and 8x + 15y + 31 = 0
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.
If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is
Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio: