Advertisements
Advertisements
प्रश्न
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + b, a − b)
उत्तर
(a, b) and (a + b, a − b)
\[\text { Here }, \left( x_1 , y_1 \right) \equiv \left( a, b \right) \]
\[\left( x_2 , y_2 \right) \equiv \left( a + b, a - b \right)\]
So, the equation of the line passing through the two points is
\[y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}\left( x - x_1 \right)\]
\[ \Rightarrow y - b = \frac{a - b - b}{a + b - a}\left( x - a \right)\]
\[ \Rightarrow by - b^2 = \left( a - 2b \right)x - a^2 + 2ab\]
\[ \Rightarrow \left( a - 2b \right)x - by + b^2 + 2ab - a^2 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line parallel to x-axis and passing through (3, −5).
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(0, −a) and (b, 0)
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (0, 1), (2, 0) and (−1, −2).
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.
Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.