हिंदी

The Equation of the Base of an Equilateral Triangle is X + Y = 2 and Its Vertex is (2, −1). Find the Length and Equations of Its Sides. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.

संक्षेप में उत्तर

उत्तर

Let A (2, −1) be the vertex of the equilateral triangle ABC and x + y = 2 be the equation of BC.

Here, we have to find the equations of the sides AB and  AC, each of which makes an angle of \[{60}^\circ\] with the line x + y = 2

The equations of two lines passing through point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the line whose slope is m is given below:

\[y - y_1 = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]

Here, 

\[x_1 = 2, y_1 = - 1, \alpha = {60}^\circ , m = - 1\]

So, the equations of the required sides are

\[y + 1 = \frac{- 1 + \tan {60}^\circ}{1 + \tan {60}^\circ}\left( x - 2 \right)\text {  and } y + 1 = \frac{- 1 - \tan {60}^\circ}{1 - \tan {60}^\circ}\left( x - 2 \right)\]

\[ \Rightarrow y + 1 = \frac{- 1 + \sqrt{3}}{1 + \sqrt{3}}\left( x - 2 \right) \text { and } y + 1 = \frac{- 1 - \sqrt{3}}{1 - \sqrt{3}}\left( x - 2 \right)\]

\[ \Rightarrow y + 1 = \left( 2 - \sqrt{3} \right)\left( x - 2 \right) \text { and } y + 1 = \left( 2 + \sqrt{3} \right)\left( x - 2 \right)\]

Solving x + y = 2 and \[y + 1 = \left( 2 - \sqrt{3} \right)\left( x - 2 \right)\],  we get:

\[x = \frac{15 + \sqrt{3}}{6}, y = - \frac{3 + \sqrt{3}}{6}\]

\[\therefore B \equiv \left( \frac{15 + \sqrt{3}}{6}, - \frac{3 + \sqrt{3}}{6} \right) or C \equiv \left( \frac{15 - \sqrt{3}}{6}, - \left( \frac{3 - \sqrt{3}}{6} \right) \right)\]

\[\therefore\] AB = BC = AD = \[= \sqrt{\frac{2}{3}}\]

Equations of its sides are given below:

\[ \left( 2 - \sqrt{3} \right)x - y - 5 + 2\sqrt{3} = 0 , \left( 2 + \sqrt{3} \right)x - y - 5 - 2\sqrt{3} = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.18 [पृष्ठ १२५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.18 | Q 12 | पृष्ठ १२५

संबंधित प्रश्न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×