हिंदी

Find the Equations of Two Straight Lines Passing Through (1, 2) and Making an Angle of 60° with the Line X + Y = 0. Find Also the Area of the Triangle Formed by the Three Lines. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.

संक्षेप में उत्तर

उत्तर

Let A(1, 2) be the vertex of the triangle ABC and x + y = 0 be the equation of BC.

Here, we have to find the equations of sides AB and AC, each of which makes an angle of \[{60}^\circ\] with the line x + y = 0.

We know the equations of two lines passing through a point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the line whose slope is m. 
\[y - y_1 = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]
Here, 
\[x_1 = 1, y_1 = 2, \alpha = {60}^\circ , m = - 1\]
So, the equations of the required sides are

\[y - 2 = \frac{- 1 + \tan {60}^\circ}{1 + \tan {60}^\circ}\left( x - 1 \right) \text { and } y - 2 = \frac{- 1 - \tan {60}^\circ}{1 - \tan {60}^\circ}\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}\left( x - 1 \right)\text {  and } y - 2 = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = \left( 2 - \sqrt{3} \right)\left( x - 1 \right) \text { and } y - 2 = \left( 2 + \sqrt{3} \right)\left( x - 1 \right)\]

Solving x + y = 0 and \[y - 2 = \left( 2 - \sqrt{3} \right)\left( x - 1 \right)\], we get:

\[x = - \frac{\sqrt{3} + 1}{2}, y = \frac{\sqrt{3} + 1}{2}\]

\[\therefore B \equiv \left( - \frac{\sqrt{3} + 1}{2}, \frac{\sqrt{3} + 1}{2} \right) \text { or } C \equiv \left( \frac{\sqrt{3} - 1}{2}, - \frac{\sqrt{3} - 1}{2} \right)\]

AB = BC = AD = \[= \sqrt{6} \text { units }\]

\[\therefore\] Area of the required triangle = \[\frac{\sqrt{3} \times \left( \sqrt{6} \right)^2}{4} = \frac{3\sqrt{3}}{2} \text { square units }\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.18 [पृष्ठ १२५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.18 | Q 9 | पृष्ठ १२५

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance `sqrt(6)/3` from the given point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×