Advertisements
Advertisements
प्रश्न
Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.
उत्तर
Let A(1, 2) be the vertex of the triangle ABC and x + y = 0 be the equation of BC.
Here, we have to find the equations of sides AB and AC, each of which makes an angle of \[{60}^\circ\] with the line x + y = 0.
\[y - 2 = \frac{- 1 + \tan {60}^\circ}{1 + \tan {60}^\circ}\left( x - 1 \right) \text { and } y - 2 = \frac{- 1 - \tan {60}^\circ}{1 - \tan {60}^\circ}\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}\left( x - 1 \right)\text { and } y - 2 = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = \left( 2 - \sqrt{3} \right)\left( x - 1 \right) \text { and } y - 2 = \left( 2 + \sqrt{3} \right)\left( x - 1 \right)\]
Solving x + y = 0 and \[y - 2 = \left( 2 - \sqrt{3} \right)\left( x - 1 \right)\], we get:
\[x = - \frac{\sqrt{3} + 1}{2}, y = \frac{\sqrt{3} + 1}{2}\]
\[\therefore B \equiv \left( - \frac{\sqrt{3} + 1}{2}, \frac{\sqrt{3} + 1}{2} \right) \text { or } C \equiv \left( \frac{\sqrt{3} - 1}{2}, - \frac{\sqrt{3} - 1}{2} \right)\]
AB = BC = AD = \[= \sqrt{6} \text { units }\]
\[\therefore\] Area of the required triangle = \[\frac{\sqrt{3} \times \left( \sqrt{6} \right)^2}{4} = \frac{3\sqrt{3}}{2} \text { square units }\]
APPEARS IN
संबंधित प्रश्न
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.
A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].
Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.
Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\] and find the equation of the third side.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.