मराठी

Find the Equations of the Lines Through the Point of Intersection of the Lines X − 3y + 1 = 0 and 2x + 5y − 9 = 0 and Whose Distance from the Origin is - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].

थोडक्यात उत्तर

उत्तर

The equation of the straight line passing through the point of intersection of x − 3y + 1 = 0 and 2x + 5y − 9 = 0 is given below:
x − 3y + 1 + λ(2x + 5y − 9) = 0

\[\Rightarrow\]  (1 + 2λ)x + (−3 + 5λ)y + 1 − 9λ = 0        ... (1)

The distance of this line from the origin is \[\sqrt{5}\].

\[\left| \frac{1 - 9\lambda}{\sqrt{\left( 1 + 2\lambda \right)^2 + \left( 5\lambda - 3 \right)^2}} \right| = \sqrt{5}\]

\[ \Rightarrow 1 + 81 \lambda^2 - 18\lambda = 145 \lambda^2 - 130\lambda + 50\]

\[ \Rightarrow 64 \lambda^2 - 112\lambda + 49 = 0\]

\[ \Rightarrow \left( 8\lambda - 7 \right)^2 = 0\]

\[ \Rightarrow \lambda = \frac{7}{8}\]

Substituting the value of λ in (1), we get the equation of the required line.

\[\left( 1 + \frac{14}{8} \right)x + \left( - 3 + \frac{35}{8} \right)y + 1 - \frac{63}{8} = 0\]

\[ \Rightarrow 22x + 11y - 55 = 0\]

\[ \Rightarrow 2x + y - 5 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.19 [पृष्ठ १३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.19 | Q 10 | पृष्ठ १३१

संबंधित प्रश्‍न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3)  x + y` = 1 is ______.


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×