मराठी

The Equation of the Straight Line Which Passes Through the Point (−4, 3) Such that the Portion of the Line Between the Axes is Divided Internally by the Point in the Ratio 5 : 3 is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is

पर्याय

  • 9x − 20y + 96 = 0

  •  9x + 20y = 24

  •  20x + 9y + 53 = 0

  • none of these

MCQ

उत्तर

9x − 20y + 96 = 0

Let the required line intersects the coordinate axis at (a, 0) and (0, b).

The point (−4, 3) divides the required line in the ratio 5 : 3

\[\therefore - 4 = \frac{5 \times 0 + 3 \times a}{5 + 3} \text { and } 3 = \frac{5 \times b + 3 \times 0}{5 + 3}\]

\[ \Rightarrow a = \frac{- 32}{3} \text { and } b = \frac{24}{5}\]

Hence, The equation of the required line is given below:

\[\frac{x}{\frac{- 32}{3}} + \frac{y}{\frac{24}{5}} = 1\]

\[ \Rightarrow \frac{- 3x}{32} + \frac{5y}{24} = 1\]

\[ \Rightarrow - 9x + 20y = 96\]

\[ \Rightarrow 9x - 20y + 96 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.21 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.21 | Q 4 | पृष्ठ १३३

संबंधित प्रश्‍न

Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×