मराठी

Find the Equations of the Two Straight Lines Through (1, 2) Forming Two Sides of a Square of Which 4x + 7y = 12 is One Diagonal. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.

थोडक्यात उत्तर

उत्तर

Let A (1, 2) be the vertex of square ABCD and BD be one diagonal, whose equation is 4x + 7y = 12

Here, we have to find the equations of sides AB and AD, each of which makes an angle of \[{45}^\circ\]  with line 4x + 7y = 12

We know the equations of two lines passing through a point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the line whose slope is m.

\[y -  y_1  = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]
Here,

Equation of the given line is

\[4x + 7y = 9\]

\[ \Rightarrow y = - \frac{4}{7}x + \frac{9}{4}\]

\[\therefore x_1 = 1, y_1 = 2, \alpha = {45}^\circ , m = - \frac{4}{7}\]

So, the equations of the required sides are

\[y - 2 = \frac{- \frac{4}{7} + \tan {45}^\circ}{1 + \frac{4}{7}\tan {45}^\circ}\left( x - 1 \right) \text { and } y - 2 = \frac{- \frac{4}{7} - \tan {45}^\circ}{1 - \frac{4}{7}\tan {45}^\circ}\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = \frac{- \frac{4}{7} + 1}{1 + \frac{4}{7}}\left( x - 1 \right) \text { and } y - 2 = \frac{- \frac{4}{7} - 1}{1 - \frac{4}{7}}\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = \frac{3}{11}\left( x - 1 \right) \text { and } y - 2 = \frac{- 11}{3}\left( x - 1 \right)\]

\[ \Rightarrow 3x - 11y + 19 = 0\text {  and } 11x + 3y - 17 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.18 [पृष्ठ १२५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.18 | Q 8 | पृष्ठ १२५

संबंधित प्रश्‍न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance `sqrt(6)/3` from the given point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×