Advertisements
Advertisements
प्रश्न
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
उत्तर
The equation of the line in intercept form is \[\frac{x}{a} + \frac{y}{b} = 1\].
The line passes through (2, 1).
∴ \[\frac{2}{a} + \frac{1}{b} = 1\] ... (1)
Let the line 3x − 5y = 15 intersect the x-axis and the y-axis at A and B, respectively.
At x = 0 we have,
0 − 5y = 15
\[\Rightarrow\] y = −3
At y = 0, we have,
3x − 0 = 15
\[\Rightarrow\] x = 5
\[\therefore A \equiv \left( 0, - 3 \right) \text { and } B \equiv \left( 5, 0 \right)\]
The midpoint of AB is \[\left( \frac{5}{2}, - \frac{3}{2} \right)\].
Clearly, the point
\[\left( \frac{5}{2}, - \frac{3}{2} \right)\] lies on the line \[\frac{x}{a} + \frac{y}{b} = 1\].
∴ \[\frac{5}{2a} - \frac{3}{2b} = 1\] ... (2)
Using \[\frac{3}{2} \times eq (1) + eq (2)\] we get,
\[\frac{3}{a} + \frac{5}{2a} = \frac{3}{2} + 1\]
\[ \Rightarrow a = \frac{11}{5}\]
For a = \[\frac{11}{5}\] we have,
\[\frac{10}{11} + \frac{1}{b} = 1\]
\[ \Rightarrow b = 11\]
Hence, the equation of the required line is
\[\frac{5x}{11} + \frac{y}{11} = 1\]
\[ \Rightarrow 5x + y = 11\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + c sin α, b + c cos α)
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + b, a − b)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .
Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.
Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\] and find the equation of the third side.
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3) x + y` = 1 is ______.