मराठी

Find the Equations to the Sides of an Isosceles Right Angled Triangle the Equation of Whose Hypotenues is 3x + 4y = 4 and the Opposite Vertex is the Point (2, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).

थोडक्यात उत्तर

उत्तर

\[Here , we are given \bigtriangleup ABC is an isosceles right angled triangle . \]

\[\angle A + \angle B + \angle C = 180^\circ\]

\[ \Rightarrow 90^\circ + \angle B + \angle B = 180^\circ\]

\[ \Rightarrow \angle B = 45^\circ, \angle C = 45^\circ\]

Now, we have to find the equations of the sides AB and AC, where 3x + 4y = 4 is the equation of the hypotenuse BC.

We know that the equations of two lines passing through a point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the given line y = mx + c are \[y - y_1 = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]

Here,

Equation of the given line is, 

\[3x + 4y = 4\]

\[ \Rightarrow 4y = - 3x + 4\]

\[ \Rightarrow y = - \frac{3}{4}x + 1\]

\[\text { Comparing this equation with } y = mx + c\]

we get, 

\[m = - \frac{3}{4}\]

\[x_1 = 2, y_1 = 2, \alpha = {45}^\circ , m = - \frac{3}{4}\]

So, the equations of the required lines are

\[y - 2 = \frac{- \frac{3}{4} + \tan {45}^\circ}{1 + \frac{3}{4}\tan {45}^\circ}\left( x - 2 \right)\text {  and } y - 2 = \frac{- \frac{3}{4} - \tan {45}^\circ}{1 - \frac{3}{4}\tan {45}^\circ}\left( x - 2 \right)\]

\[ \Rightarrow y - 2 = \frac{- \frac{3}{4} + 1}{1 + \frac{3}{4}}\left( x - 2 \right) \text { and } y - 2 = \frac{- \frac{3}{4} - 1}{1 - \frac{3}{4}}\left( x - 2 \right)\]

\[ \Rightarrow y - 2 = \frac{1}{7}\left( x - 2 \right) \text { and } y - 2 = \frac{- 7}{1}\left( x - 2 \right)\]

\[ \Rightarrow x - 7y + 12 = 0\text {  and } 7x + y - 16 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.18 [पृष्ठ १२५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.18 | Q 6 | पृष्ठ १२५

संबंधित प्रश्‍न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×