मराठी

Find the Equation of the Straight Lines Passing Through the Following Pair of Point : (A Cos α, A Sin α) and (A Cos β, A Sin β) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)

थोडक्यात उत्तर

उत्तर

(a cos α, a sin α) and (a cos β, a sin β) 

\[\text { Here, } \left( x_1 , y_1 \right) \equiv \left( a\cos\alpha, a\sin\alpha \right) \]

\[\left( x_2 , y_2 \right) \equiv \left( a\cos\beta, a\sin\beta \right)\]

So, the equation of the line passing through the two points is

\[y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}\left( x - x_1 \right)\]

\[ \Rightarrow y - a\sin\alpha = \frac{a\sin\beta - a\sin\alpha}{a\cos\beta - a\cos\alpha}\left( x - a\cos\alpha \right)\]

\[ \Rightarrow y - a\sin\alpha = \frac{\sin\beta - \sin\alpha}{\cos\beta - \cos\alpha}\left( x - a\cos\alpha \right)\]

\[\Rightarrow y\left( \cos\beta - \cos\alpha \right) - x\left( \sin\beta - \sin\alpha \right) - a\sin\alpha\cos\beta + a\sin\alpha\cos\alpha + a\cos\alpha\sin\beta - a\cos\alpha\sin\alpha = 0\]

\[ \Rightarrow y\left( \cos\beta - \cos\alpha \right) - x\left( \sin\beta - \sin\alpha \right) = a\sin\alpha\cos\beta - a\cos\alpha\sin\beta\]

\[ \Rightarrow 2y\sin\left( \frac{\alpha + \beta}{2} \right)\sin\left( \frac{\alpha - \beta}{2} \right) - 2x\sin\left( \frac{\beta - \alpha}{2} \right)\cos\left( \frac{\alpha + \beta}{2} \right) = a\sin\left( \alpha - \beta \right)\]

\[ \Rightarrow 2y\sin\left( \frac{\alpha + \beta}{2} \right)\sin\left( \frac{\alpha - \beta}{2} \right) + 2x\sin\left( \frac{\alpha - \beta}{2} \right)\cos\left( \frac{\alpha + \beta}{2} \right) = 2a\sin\left( \frac{\alpha - \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right)\]

\[ \Rightarrow x\cos\left( \frac{\alpha + \beta}{2} \right) + y\sin\left( \frac{\alpha + \beta}{2} \right) = a\cos\left( \frac{\alpha - \beta}{2} \right) \left[ \text { dividing by } \sin\left( \frac{\alpha - \beta}{2} \right) \right]\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.5 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.5 | Q 1.6 | पृष्ठ ३५

संबंधित प्रश्‍न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×