Advertisements
Advertisements
प्रश्न
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
उत्तर
The equation of the line with intercepts a and b is \[\frac{x}{a} + \frac{y}{b} = 1\] .
Here, a + b = 9
\[\Rightarrow b = 9 - a\] ... (1)
The line passes through (2, 2).
∴ \[\frac{2}{a} + \frac{2}{b} = 1\] ... (2)
From equations (1) and (2)
\[\frac{2}{a} + \frac{2}{9 - a} = 1\]
\[ \Rightarrow 18 - 2a + 2a = 9a - a^2 \]
\[ \Rightarrow a^2 - 9a + 18 = 0\]
\[ \Rightarrow \left( a - 3 \right)\left( a - 6 \right) = 0\]
\[ \Rightarrow a = 3, 6\]
For a = 3, b = 9 \[-\] 3 = 6
For a = 6, b = 9 \[-\] 6 = 3
Thus, the equation of the line is
\[\frac{x}{3} + \frac{y}{6} = 1 \text { or }\frac{x}{6} + \frac{y}{3} = 1\]
\[ \Rightarrow 2x + y = 6 \text { or } x + 2y = 6\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3) x + y` = 1 is ______.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.