Advertisements
Advertisements
प्रश्न
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
उत्तर
The point of intersection of lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 is given by (− 1, − 1)
Now, the slope of the line 3x − 5y + 11 = 0 \[\text { or } y = \frac{3}{5}x + \frac{11}{5}\] is \[\frac{3}{5}\]
Now, we know that the product of the slopes of two perpendicular lines is − 1.
Let the slope of the required line be m
\[m \times \frac{3}{5} = - 1\]
\[ \Rightarrow m = - \frac{5}{3}\]
Now, the equation of the required line passing through (− 1, − 1) and having slope \[- \frac{5}{3}\] is given by
\[y + 1 = - \frac{5}{3}\left( x + 1 \right)\]
\[ \Rightarrow 3y + 3 = - 5x - 5\]
\[ \Rightarrow 5x + 3y + 8 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.
Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + c sin α, b + c cos α)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').
The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\] and find the equation of the third side.
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].
Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.