English

Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3. - Mathematics

Advertisements
Advertisements

Question

Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.

Sum

Solution

∵ x-intercept = 3

∴ The line passes through A(3, 0).

Line PQ: x – 7y + 5 = 0

or 7y = x + 5

or y = `1/7 "x" + 5/7`

Therefore slope of PQ = `1/7`

∵ PQ ⊥ AB

∴ Slope of line AB passing through A = –7

∴ Equation of line AB from point (3, 0),

y – 0 = –7(x – 3)

= –7x + 21

or 7x + y – 21 = 0

Second method: Any line perpendicular to ax + by + c = 0 bx – ay + k = 0

∴ Perpendicular to x – 7y + 5 = 0 7x + y + k = 0

This line passes through (3, 0).

∴ 7 x 3 + 0 + k = 0,

i.e. k = –21

∴ The equation of the required line is 7x + y – 21 = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise 10.3 [Page 228]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise 10.3 | Q 8 | Page 228

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of a line for p = 4, α = 150°.


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The figure formed by the lines ax ± by ± c = 0 is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

y − 2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×