English

Reduce the Following Equation to the Normal Form and Find P and α in X − 3 = 0. - Mathematics

Advertisements
Advertisements

Question

Reduce the following equation to the normal form and find p and α in x − 3 = 0.

Answer in Brief

Solution

x − 3 = 0

\[\Rightarrow x = 3\]

\[ \Rightarrow x + 0 \times y = 3\]

\[ \Rightarrow \frac{x}{\sqrt{1^2 + 0^2}} + 0 \times \frac{y}{\sqrt{1^2 + 0^2}} = \frac{3}{\sqrt{1^2 + 0^2}} \left[\text {  Dividing both sides by }\sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y } \right)^2} \right]\]

\[ \Rightarrow x + 0 \times y = 3\]

This is the normal form of the given line, where p = 3,

\[cos\alpha = 1\] and \[\text { sin }\alpha = 0 \Rightarrow \alpha = 0\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.9 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.9 | Q 2.4 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for p = 8, α = 300°.


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1


The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.


A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×