हिंदी

Reduce the Following Equation to the Normal Form and Find P and α in X − Y + 2 √ 2 = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].

संक्षेप में उत्तर

उत्तर

\[x - y + 2\sqrt{2} = 0\]

\[\Rightarrow - x + y = 2\sqrt{2}\]

\[ \Rightarrow - \frac{x}{\sqrt{\left( - 1 \right)^2 + \left( 1 \right)^2}} + \frac{y}{\sqrt{\left( - 1 \right)^2 + \left( 1 \right)^2}} = \frac{2\sqrt{2}}{\sqrt{\left( - 1 \right)^2 + \left( 1 \right)^2}} \left[ \text { Dividing both sides by } \sqrt{\left(\text {  coefficient of x } \right)^2 + \left(\text {  coefficient of y } \right)^2} \right]\]

\[ \Rightarrow - \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = 2\]

This is the normal form of the given line, where p = 2,

\[cos\alpha = - \frac{1}{\sqrt{2}}\] and \[\sin\alpha = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \alpha = {135}^\circ \left[ \because \text { The coefficent of x and y are negative and positive respectively . So }, \alpha \text { lies in second quadrant } \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.9 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.9 | Q 2.3 | पृष्ठ ७२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1. 


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for p = 8, α = 300°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1


The figure formed by the lines ax ± by ± c = 0 is


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.


If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×