हिंदी

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.

विकल्प

  • `1/3`

  • `2/3`

  • 1

  • `4/3`

MCQ
रिक्त स्थान भरें

उत्तर

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is `4/3`.

Explanation:

Any line perpendicular to 3x + y = 3

x – 3y = λ    ....(λ = constant)

If it passes through the point (2, 2)

Then 2 – 3(2) = λ

⇒ λ = – 4

∴ Required equation is x – 3y = – 4

⇒ – 3y = – x – 4

⇒ y = `1/3x + 4/3`  ......[∵ y = mx + c]

So, the y-intercept is `4/3`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 39 | पृष्ठ १८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1. 


Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.


Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×