मराठी

Find the Equations of the Altitudes of a ∆ Abc Whose Vertices Are a (1, 4), B (−3, 2) and C (−5, −3). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).

थोडक्यात उत्तर

उत्तर

The vertices of ∆ABC are A (1, 4), B (−3, 2) and C (−5, −3).

Slope of AB = \[\frac{2 - 4}{- 3 - 1} = \frac{1}{2}\]

Slope of BC =  \[\frac{- 3 - 2}{- 5 + 3} = \frac{5}{2}\]

Slope of CA =  \[\frac{4 + 3}{1 + 5} = \frac{7}{6}\]

Thus, we have:
Slope of CF =  \[- 2\]

Slope of AD =  \[- \frac{2}{5}\]

Slope of BE =  \[- \frac{6}{7}\]

Hence,

\[\text { Equation of CF is } : \]

\[y + 3 = - 2\left( x + 5 \right)\]

\[ \Rightarrow 2x + y + 13 = 0\]

\[\text { Equation of AD is } : \]

\[ y - 4 = - \frac{2}{5}\left( x - 1 \right) \]

\[ \Rightarrow 2x + 5y - 22 = 0\]

\[\text { Equation of BE is : } \]

\[ y - 2 = - \frac{6}{7}\left( x + 3 \right)\]

\[ \Rightarrow 6x + 7y + 4 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.12 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.12 | Q 4 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


What can be said regarding a line if its slope is negative?


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×