हिंदी

Find the Equations of the Altitudes of a ∆ Abc Whose Vertices Are a (1, 4), B (−3, 2) and C (−5, −3). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).

संक्षेप में उत्तर

उत्तर

The vertices of ∆ABC are A (1, 4), B (−3, 2) and C (−5, −3).

Slope of AB = \[\frac{2 - 4}{- 3 - 1} = \frac{1}{2}\]

Slope of BC =  \[\frac{- 3 - 2}{- 5 + 3} = \frac{5}{2}\]

Slope of CA =  \[\frac{4 + 3}{1 + 5} = \frac{7}{6}\]

Thus, we have:
Slope of CF =  \[- 2\]

Slope of AD =  \[- \frac{2}{5}\]

Slope of BE =  \[- \frac{6}{7}\]

Hence,

\[\text { Equation of CF is } : \]

\[y + 3 = - 2\left( x + 5 \right)\]

\[ \Rightarrow 2x + y + 13 = 0\]

\[\text { Equation of AD is } : \]

\[ y - 4 = - \frac{2}{5}\left( x - 1 \right) \]

\[ \Rightarrow 2x + 5y - 22 = 0\]

\[\text { Equation of BE is : } \]

\[ y - 2 = - \frac{6}{7}\left( x + 3 \right)\]

\[ \Rightarrow 6x + 7y + 4 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.12 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.12 | Q 4 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


What can be said regarding a line if its slope is negative?


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the equation of a straight line  with slope − 1/3 and y-intercept − 4.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×