Advertisements
Advertisements
प्रश्न
Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
उत्तर
(i) We know that the angle between the coordinate axes is \[\frac{\pi}{2}\] .
The line bisects the first quadrant angle.
Inclination of the line with the positive x-axis = \[\frac{1}{2}\left( \frac{\pi}{2} \right) = \frac{\pi}{4}\]
\[\therefore \text { Slope of the line } = \tan\left( \frac{\pi}{4} \right) = 1\]
(ii) The line makes an angle of \[{30}^\circ\] with the positive direction of the y-axis measured anticlockwise
Since the line makes an angle of \[{30}^\circ\] with the positive direction of the y-axis measured anticlockwise, it makes an angle of \[{90}^\circ + {30}^\circ = {120}^\circ\] with the positive direction of the x-axis measured anticlockwise.
\[\therefore \text { Slope of the line } = \tan {120}^\circ = - \tan {60}^\circ = - \sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.
Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[- \frac{\pi}{4}\]
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).
What can be said regarding a line if its slope is negative?
Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).
Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.
By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.
Find the equation of a straight line with slope 2 and y-intercept 3 .
Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).
Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).
The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.
Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.
Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.
The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if
The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are
If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?
If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.
If x + y = k is normal to y2 = 12x, then k is ______.
The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.
The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.
The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.
Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.
The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.
The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.