मराठी

Without Using Pythagoras Theorem, Show that the Points a (0, 4), B (1, 2) and C (3, 3) Are the Vertices of a Right Angled Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.

थोडक्यात उत्तर

उत्तर

We have, A (0, 4), B (1, 2) and C (3, 3)
Now, \[m_1 = \text { Slope of }AB = \frac{2 - 4}{1 - 0} = - 2\]

\[m_2 =\text { Slope of BC } = \frac{3 - 2}{3 - 1} = \frac{1}{2}\]

\[m_3 = \text { Slope of CA } = \frac{4 - 3}{0 - 3} = - \frac{1}{3}\]

\[\therefore m_1 m_2 = - 2 \times \frac{1}{2} = - 1\]

Therefore, AB is perpendicular to BC, i.e.

\[\angle ABC = {90}^\circ\].

Thus, the given points are the vertices of a right angled triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 10 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What can be said regarding a line if its slope is positive ?


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×