हिंदी

If R = {(X, Y) : X, Y ∈ Z, X2 + Y2 ≤ 4} is a Relation Defined on the Set Z of Integers, Then Write Domain of R. - Mathematics

Advertisements
Advertisements

प्रश्न

If R = {(xy) : xy ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.

उत्तर

Given:
R = {(xy) : xy ∈ Z, x2 + y2 ≤ 4}
We know:

\[\left( - 2 \right)^2 + 0^2 \leq 4\]

\[ \left( 2 \right)^2 + 0^2 \leq 4\]

\[ \left( - 1 \right)^2 + 0^2 \leq 4\]

\[ \left( 1 \right)^2 + 0^2 \leq 4\]

\[ \left( - 1 \right)^2 + \left( 1 \right)^2 \leq 4\]

\[ 0^2 + 0^2 \leq 4\]

\[ \left( 1 \right)^2 + \left( 1 \right)^2 \leq 4\]

\[ \left( - 1 \right)^2 + \left( - 1 \right)^2 \leq 4\]

∴ Domain (R) = {-2,-1, 0, 1, 2}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations - Exercise 2.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 2 Relations
Exercise 2.4 | Q 4 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.


Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.


Find the inverse relation R−1 in each of the cases:

(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Let A = (xyz) and B = (ab). Find the total number of relations from A into B.

 

Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N

(iii) (ab) R (cd) and (cd) R (ef) ⇒ (ab) R (ef) for all (ab), (cd), (ef) ∈ N × N

 

If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


If R = [(xy) : xy ∈ W, 2x + y = 8], then write the domain and range of R.


Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is


If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is


If the set A has p elements, B has q elements, then the number of elements in A × B is


Write the relation in the Roster Form. State its domain and range

R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`


Write the relation in the Roster Form. State its domain and range

R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Select the correct answer from given alternative

If A = {a, b, c} The total no. of distinct relations in A × A is


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R2 = {(1, 5), (2, 4), (3, 6)}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R3 = {(2, –1), (7, 7), (1, 3)}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×