Advertisements
Advertisements
प्रश्न
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.
उत्तर
s = `"n"/(2)[2"a" + ("n" - 1)"d"]`
⇒ s = `"an" + ("n"("n" - 1)"d")/(2)`
⇒ s - `"an" = ("n"("n" - 1)"d")/(2)`
⇒ `((2"s" - 2"an")/("n"("n" - 1)))` = d
⇒ d = `(2)/("n"("n" - 1))("s" - "an")`
Given that n = 3, a = n + 1 and s = 18
Since
a = n + 1
⇒ a = 3 + 1
= 4
Substituting we get
⇒ d = `(2)/(3(3 - 1))(18 - (4)(3))`
⇒ d = `(2)/(3(2))(18 - 12)`
⇒ d = `(1)/(3)(6)`
⇒ d = 2.
APPEARS IN
संबंधित प्रश्न
The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.
The fahrenheit temperature, F is 32 more than nine -fifths of the centigrade temperature C. Express this relation by a formula.
Make x the subject of formula `"a"x^2/"a"^2 + y^2/"b"^2` = 1
Make r2 the subject of formula `(1)/"R" = (1)/"r"_1 + (1)/"r"_2`
Make A the subject of formula R = `("m"_1"B" + "m"_2"A")/("m"_1 + "m"_2)`
Make c the subject of formula x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
If 3ax + 2b2 = 3bx + 2a2, then express x in terms of a and b. Also, express the result in the simplest form.
Make g the subject of the formula v2 = u2 - 2gh. Find g, when v = 9.8, u = 41.5 and h = 25.4.
Make f the subject of the formula D = `sqrt((("f" + "p")/("f" - "p"))`. Find f, when D = 13 and P = 21.
The pressure P and volume V of a gas are connected by the formula PV = C; where C is a constant. If P = 4 when V = `2(1)/(2)`; find the value of P when V = 4?