Advertisements
Advertisements
प्रश्न
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.
उत्तर
s = `"n"/(2)[2"a" + ("n" - 1)"d"]`
⇒ s = `"an" + ("n"("n" - 1)"d")/(2)`
⇒ s - `"an" = ("n"("n" - 1)"d")/(2)`
⇒ `((2"s" - 2"an")/("n"("n" - 1)))` = d
⇒ d = `(2)/("n"("n" - 1))("s" - "an")`
Given that n = 3, a = n + 1 and s = 18
Since
a = n + 1
⇒ a = 3 + 1
= 4
Substituting we get
⇒ d = `(2)/(3(3 - 1))(18 - (4)(3))`
⇒ d = `(2)/(3(2))(18 - 12)`
⇒ d = `(1)/(3)(6)`
⇒ d = 2.
APPEARS IN
संबंधित प्रश्न
The fahrenheit temperature, F is 32 more than nine -fifths of the centigrade temperature C. Express this relation by a formula.
The area A of a circular ring is π times the difference between the squares of outer radius R and inner radius r. Make a formula for this statement.
Make r2 the subject of formula `(1)/"R" = (1)/"r"_1 + (1)/"r"_2`
Make N the subject of formula I = `"NG"/("R" + "Ny")`
Make d the subject of formula S = `"n"/(2){2"a" + ("n" - 1)"d"}`
Given: mx + ny = p and y = ax + b. Find x in terms of m, n, p, a and b.
If A = pr2 and C = 2pr, then express r in terms of A and C.
If b = `(2"a")/("a" - 2)`, and c = `(4"b" - 3)/(3"b" + 4)`, then express c in terms of a.
Make s the subject of the formula v2 = u2 + 2as. Find s when u = 3, a = 2 and v = 5.
Make y the subject of the formula x = `(1 - y^2)/(1 + y^2)`. Find y if x = `(3)/(5)`