Advertisements
Advertisements
प्रश्न
Given: mx + ny = p and y = ax + b. Find x in terms of m, n, p, a and b.
उत्तर
mx + ny = p
Substitute y = ax + b in the above equation
mx + n(ax + b) = p
⇒ mx an x + bn = p
⇒ x(m + an) + bn = p
⇒ x(m + an) = p - bn
⇒ x = `("p" - "bn")/("m" + "an")`.
APPEARS IN
संबंधित प्रश्न
A man bought 25a articles at 30p paisa each and sold them at 20q paisa each. Find his profit in rupees.
Make R2 the subject of formula R2 = 4π(R12 - R22)
Make s the subject of the formula v2 = u2 + 2as. Find s when u = 3, a = 2 and v = 5.
Make z the subject of the formula y = `(2z + 1)/(2z - 1)`. If x = `(y + 1)/(y - 1)`, express z in terms of x, and find its value when x = 34.
Make c the subject of the formula a = b(1 + ct). Find c, when a = 1100, b = 100 and t = 4.
"The volume of a cylinder V is equal to the product of π and square of radius r and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 44cm3, π = `(22)/(7)`, h = 14cm.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Make 'm' the subject of formula.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Find m, if v = 2, g = 10, h = 5 and E = 104.
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.
"Area A oof a circular ring formed by 2 concentric circles is equal to the product of pie and the difference of the square of the bigger radius R and the square of the bigger radius R and the square of the smaller radius r. Express the above statement as a formula. Make r the subject of the formula and find r, when A = 88 sq cm and R = 8cm.