हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

If the Speed of a Rod Moving at a Relativistic Speed Parallel to Its Length is Doubled - Physics

Advertisements
Advertisements

प्रश्न

If the speed of a rod moving at a relativistic speed parallel to its length is doubled,

(a) the length will become half of the original value
(b) the mass will become double of the original value
(c) the length will decrease
(d) the mass will increase

संक्षेप में उत्तर
योग

उत्तर

(c) the length will decrease
(d) the mass will increase


If the speed of a rod moving at a relativistic speed v parallel to its length, its mass \[m = \gamma m_o  = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}\]

and its length \[l = \frac{l_o}{\gamma} =  l_o \sqrt{1 - \frac{v^2}{c^2}}\]

where \[\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} =  \left( 1 - \frac{v^2}{c^2} \right)^\frac{- 1}{2}  = 1 + \frac{v^2}{2 c^2} +  .  .  .  > 1\text{ as } v < c\]

If the speed is doubled, its multiplying factor

\[\gamma' = \frac{1}{\sqrt{1 - \frac{4 v^2}{c^2}}} =  \left( 1 - \frac{4 v^2}{c^2} \right)^\frac{- 1}{2}  = 1 + \frac{2 v^2}{c^2} +  .  .  .  > 2\gamma\]

and \[m = \gamma' m_o  > 2\gamma m_o ,   l = \frac{l_o}{\gamma'} < \frac{l_o}{2\gamma}\]

Hence, the mass will increase but more than double and length will decrease but not exactly half of the original values.

shaalaa.com
Energy and Momentum
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: The Special Theory of Relativity - MCQ [पृष्ठ ४५७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 25 The Special Theory of Relativity
MCQ | Q 2 | पृष्ठ ४५७

संबंधित प्रश्न

Mass of a particle depends on its speed. Does the attraction of the earth on the particle also depend on the particle's speed?


The magnitude of linear momentum of a particle moving at a relativistic speed v is proportional to ______________ .


Which of the following quantities related to an electron has a finite upper limit?


A rod of rest length L moves at a relativistic speed. Let L' = L/γ. Its length

(a) must be equal to L'
(b) may be equal to L
(c) may be more than L' but less than L
(d) may be more than L


When a rod moves at a relativistic speed v, its mass ________________ .


Find the increase in mass when 1 kg of water is heated from 0°C to 100°C. Specific heat capacity of water = 4200 J kg−1 K−1.


Find the loss in the mass of 1 mole of an ideal monatomic gas kept in a rigid container as it cools down by 100°C. The gas constant R = 8.3 J K−1 mol−1.


By what fraction does the mass of a boy increase when he starts running at a speed of 12 km h−1?


The energy from the sun reaches just outside the earth's atmosphere at a rate of 1400 W m−2. The distance between the sun and the earth is 1.5 × 1011 m.
(a) Calculate the rate  which the sun is losing its mass.
(b) How long will the sun last assuming a constant decay at this rate? The present mass of the sun is 2 × 1030 kg.


An electron and a positron moving at small speeds collide and annihilate each other. Find the energy of the resulting gamma photon.


Find the mass, the kinetic energy and the momentum of an electron moving at 0.8c.


Through what potential difference should an electron be accelerated to give it a speed of (a) 0.6c, (b) 0.9c and (c) 0.99c?


Find the speed of an electron with kinetic energy (a) 1 eV, (b) 10 keV and (c) 10 MeV.


What is the kinetic energy of an electron in electron volts with mass equal to double its rest mass?


Find the speed at which the kinetic energy of a particle will differ by 1% from its nonrelativistic value \[\frac{1}{2} m_o v^2 .\]


Choose the correct answer from given options
The graph showing the correct variation of linear momentum (p) of a charge particle with its de-Broglie wavelength (λ) is _____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×