Advertisements
Advertisements
प्रश्न
If the sum of first n terms of an A.P. is \[\frac{1}{2}\] (3n2 + 7n), then find its nth term. Hence write its 20th term.
उत्तर
Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn = \[\frac{n}{2}\][2a + (n − 1)d]
It is given that sum of the first n terms of an A.P. is \[\frac{1}{2}\] (3n2 + 7n).
∴ First term = a = S1 = \[\frac{1}{2}\][3(1)2 + 7(1)] = 5.
Sum of first two terms = S2 = \[\frac{1}{2}\][3(2)2 + 7(2)] = 13.
∴ Common difference = d = Second term − First term
= 8 − 5 = 3
Also, nth term = an = a + (n − 1)d
⇒ an = 5 + (n − 1)(3)
⇒ an = 5 + 3n − 3
⇒ an = 3n + 2
Thus, nth term of this A.P. is 3n + 2.
Now,
a20 = a + (20 − 1)d
⇒ a20 = 5 + 19(3)
⇒ a20 = 5 + 57
⇒ a20 = 62
Thus, 20th term of this A.P is 62.
APPEARS IN
संबंधित प्रश्न
Find the 9th term from the end (towards the first term) of the A.P. 5, 9, 13, ...., 185
Find the sum of all integers between 50 and 500, which are divisible by 7.
Find the sum 2 + 4 + 6 ... + 200
Find the sum of the first 15 terms of each of the following sequences having the nth term as
bn = 5 + 2n
In an A.P. 19th term is 52 and 38th term is 128, find sum of first 56 terms.
In an A.P. the first term is – 5 and the last term is 45. If the sum of all numbers in the A.P. is 120, then how many terms are there? What is the common difference?
Divide 207 in three parts, such that all parts are in A.P. and product of two smaller parts will be 4623.
If the sum of first p terms of an A.P. is equal to the sum of first q terms then show that the sum of its first (p + q) terms is zero. (p ≠ q)
Simplify `sqrt(50)`
In an A.P. sum of three consecutive terms is 27 and their products is 504. Find the terms. (Assume that three consecutive terms in an A.P. are a – d, a, a + d.)