हिंदी

If the function f(x) = π[tan(π4+x)]1x for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ? -

Advertisements
Advertisements

प्रश्न

If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?

विकल्प

  • e

  • e–1

  • e2

  • e–2

MCQ

उत्तर

e

Explanation:

Given, f(x) = `[tan(π/4 + x)]^(1/x)` = K

As, f(x) is continuous at x = 0,

∴ f(0) = `lim_(x rightarrow 0)` f(x)

= `lim_(x rightarrow 0)[tan(π/4 + x)]^(1/x)`

So, K = `lim_(x rightarrow 0)[(1 + tan x)/(1 - tan x)]^(1/x)` ...[1 form]

= `e^(lim_(x rightarrow 0))[(1 + tan x)/(1 - tan x) - 1]1/x`

= `e^(lim_(x rightarrow 0))((2tanx)/(1 - tanx))1/x` ...`[∵ lim_(x rightarrow 0) tanx/x = 1]`

Hence K = `e^(2.1(1/(1 - 0))` = e2

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×