Advertisements
Advertisements
Question
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
Options
e
e–1
e2
e–2
MCQ
Solution
e2
Explanation:
Given, f(x) = `[tan(π/4 + x)]^(1/x)` = K
As, f(x) is continuous at x = 0,
∴ f(0) = `lim_(x rightarrow 0)` f(x)
= `lim_(x rightarrow 0)[tan(π/4 + x)]^(1/x)`
So, K = `lim_(x rightarrow 0)[(1 + tan x)/(1 - tan x)]^(1/x)` ...[1∞ form]
= `e^(lim_(x rightarrow 0))[(1 + tan x)/(1 - tan x) - 1]1/x`
= `e^(lim_(x rightarrow 0))((2tanx)/(1 - tanx))1/x` ...`[∵ lim_(x rightarrow 0) tanx/x = 1]`
Hence K = `e^(2.1(1/(1 - 0))` = e2
shaalaa.com
Continuous and Discontinuous Functions
Is there an error in this question or solution?