हिंदी

If the ratio of radius of base and height of a cone is 5:12 and its volume is 314 cubic metre. Find its perpendicular height and slant height. (π = 3.14) - Geometry

Advertisements
Advertisements

प्रश्न

If the ratio of radius of base and height of a cone is 5:12 and its volume is 314 cubic metre. Find its perpendicular height and slant height. (π = 3.14)

योग

उत्तर

The ratio of radius of base and perpendicular height of a cone is 5 : 12.

Let the radius of base and perpendicular height of the cone be 5x and 12x, respectively.

Volume of the cone = 314 m3

∴ `1/3`πr2h = 314 m3

⇒ `1/3 xx 3.14 xx (5x)^2 xx 12x` = 314

⇒ 314 x3 = 314

⇒ x3 = 1

⇒ x = 1

∴ Perpendicular height of the cone = 12x = 12 × 1 = 12 m

Radius of the cone = 5x = 5 × 1 = 5 m

Now,

l2 = r+ h2

⇒ l2 = (12)+ (5)2

⇒ l2 = 144 + 25

⇒ l2 = 169

⇒ l2 = (13)2

⇒ l = 13 m

Thus, the perpendicular height and slant height of the cone is 12 m and 13 m, respectively.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Surface Area and Volume - Problem Set 9 [पृष्ठ १२३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
अध्याय 9 Surface Area and Volume
Problem Set 9 | Q 3. | पृष्ठ १२३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×