हिंदी

If the seventh term of an A.P. is 19 and its ninth term is 17, find its 63rd term. - Mathematics

Advertisements
Advertisements

प्रश्न

If the seventh term of an A.P. is `(1)/(9)` and its ninth term is `(1)/(7)`, find its 63rd term.

योग

उत्तर

a7 = `(1)/(9)`
⇒ a + 6d = `(1)/(9)`….(i)
a9 = `(1)/(7)`
⇒ a + 8d = `(1)/(7)`……(ii)
a7 = `(1)/(9) ⇒ a + 6d = (1)/(9)`        ....(i)

a9 = `(1)/(7) ⇒ a + 8d = (1)/(7)`        ....(i)
                    –      –          –    
On subtracting, –2d`(1)/(9) - (1)/(7)`

–2d = `(7 - 9)/(63)`

–2d = `(-2)/(63)`

d = `(1)/(63)`
Now, substitute the value of d in eq. (i), we get

`a + 6(1/63) = (1)/(9)`

a = `(1)/(9) - (6)/(63)`

= `(7 - 6)/(63)`

= `(1)/(63)`
∴ a63 = a + 62d

= `(1)/(63) + 62(1/63)`

= `(1 + 62)/(63)`

= `(63)/(63)`
= 1.

shaalaa.com
Simple Applications of Arithmetic Progression
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Arithmetic and Geometric Progressions - Exercise 9.2

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 9 Arithmetic and Geometric Progressions
Exercise 9.2 | Q 15
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×