हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units - Mathematics

Advertisements
Advertisements

प्रश्न

If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units

योग

उत्तर

Volume of a cube v = x3

Rate of change `"dv"/("d"x)` = 3x2

When x = 5 units

`"dv"/("d"x)` = 3(5)2

= 3(25)

= 75 units

shaalaa.com
Meaning of Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Applications of Differential Calculus - Exercise 7.1 [पृष्ठ ८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 7 Applications of Differential Calculus
Exercise 7.1 | Q 4 | पृष्ठ ८

संबंधित प्रश्न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the average velocity between t = 3 and t = 6 seconds


A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the average velocity with which the camera falls during the last 2 seconds?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds


A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How fast is the top of the ladder moving down the wall?


Find the slope of the tangent to the following curves at the respective given points.

y = x4 + 2x2 – x at x = 1


Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7


Find the points on curve y = x3 – 6x2 + x + 3 where the normal is parallel to the line x + y = 1729


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the equations of the tangents to the curve y = `- (x + 1)/(x - 1)` which are parallel to the line x + 2y = 6


Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

The maximum slope of the tangent to the curve y = ex sin x, x ∈ [0, 2π] is at


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×