Advertisements
Advertisements
प्रश्न
If `u=x^2+y^2+z^2` where `x=e^t, y=e^tsint,z=e^tcost`
Prove that `(du)/(dt)=4e^(2t)`
उत्तर
`(du)/(dt)=(delu)/(delx).(dx)/(dt)+(delu)/(dely).(dy)/(dt)+(delu)/(delz).(dz)/(dt)`
`(delu)/(delx)=2x,(delu)/(dely)=2y,(delu)/(delz)=2z`
`(dx)/(dt)=e^t, (dy)/(dt)=e^t(sint+cost) ,(dz)/(dt)=e^t(-sint+cost)`
`(du)/(dt)=(delu)/(delx).(dx)/(dt)+(delu)/(dely).(dy)/(dt)+(delu)/(delz).(dz)/(dt)`
`=2x(e^t)+2y(e^t(sint+cost))+2z(e^t(-sint+cost))`
= 2x(x)+2y(y+z)+2z(z-y)
`=2x^2+2y^2+2z^2+2xy-2xy`
`=2x^2+2y^2+2z^2`
`=2(x^2+y^2+z^2)`
=2u ………………………………………(1)
`u=x^2+y^2+z^2=(e^t)^2+(e^tsint)^2+(e^tcost)^2`
`=e^(2t)+e^(2t)(sin^2t+cos^2t)`
`=e^(2t)+e^(2t)=2e^(2t)`
Substituting value of u in equation (1)
`(du)/(dt)=2u=2(2e^(2t))=4e^(2t)`
Hence proved
`(Du)/(dt)=4e.`
APPEARS IN
संबंधित प्रश्न
If `cos alpha cos beta=x/2, sinalpha sinbeta=y/2`, prove that:
`sec(alpha -ibeta)+sec(alpha-ibeta)=(4x)/(x^2-y^2)`
If `z =log(e^x+e^y) "show that rt" - s^2 = 0 "where r"= (del^2z)/(delx^2),t=(del^2z)/(dely^2)"s"=(del^2z)/(delx dely)`
If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).`
Find the nth derivative of cos 5x.cos 3x.cos x.
Evaluate : `Lim_(x→0) (x)^(1/(1-x))`
If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.
If `y=2^xsin^2x cosx` find `y_n`