हिंदी

If Z = Log ( E X + E Y ) Show that Rt − S 2 = 0 Where R = ∂ 2 Z ∂ X 2 , T = ∂ 2 Z ∂ Y 2 S = ∂ 2 Z ∂ X ∂ Y - Applied Mathematics 1

Advertisements
Advertisements

प्रश्न

If z=log(ex+ey)show that rt-s2=0 where r=2zx2,t=2zy2s=2zxy

उत्तर १

z=log(ex+ey)

(1)zx=exex+ey

2zx2=ex(ex+ey)-ex(ex)(ex+ey)2=e2x+exy-e2x(ex+ey)2

r=2zx2=exy(ex+ey)2  .............(1)

(2) zy=eyex+ey

2zy2=ey(ex+ey)-ey(ey)(ex+ey)2=e2y+exy-e2y(e2+ey)2

t =2zy2=exyex+ey2   ................(2)

shaalaa.com

उत्तर २

z=log(ex+ey)

(1)zx=exex+ey

2zx2=ex(ex+ey)-ex(ex)(ex+ey)2=e2x+exy-e2x(ex+ey)2

r=2zx2=exy(ex+ey)2  .............(1)

(2) zy=eyex+ey

2zy2=ey(ex+ey)-ey(ey)(ex+ey)2=e2y+exy-e2y(e2+ey)2

t =2zy2=exyex+ey2   ................(2)

(3) zx=ex(ex+ey)

s =2zxy=exy(ex+ey)2 ................(3)

From (1), (2) and (3) we get,

rt =(exy(ex+ey)2)×(exy(ex+ey)2)=(exy(ex+ey)2)2=(e2xy(ex+ey)2)  .............(4)

s2 = (exy(ex+ey)2)2=(e2xy(ex+ey)2)................(5)

From (4) and (5) we get,

rt-s2 = (e2xy(ex+ey)2)-(e2xy(ex+ey)2)=0

Hence proved rt - s2= 0

shaalaa.com

उत्तर ३

z=log(ex+ey)

(1)zx=exex+ey

2zx2=ex(ex+ey)-ex(ex)(ex+ey)2=e2x+exy-e2x(ex+ey)2

r=2zx2=exy(ex+ey)2  .............(1)

(2) zy=eyex+ey

2zy2=ey(ex+ey)-ey(ey)(ex+ey)2=e2y+exy-e2y(e2+ey)2

t =2zy2=exyex+ey2   ................(2)

(3) zx=ex(ex+ey)

s =2zxy=exy(ex+ey)2 ................(3)

From (1), (2) and (3) we get,

rt =(exy(ex+ey)2)×(exy(ex+ey)2)=(exy(ex+ey)2)2=(e2xy(ex+ey)2)  .............(4)

s2 = (exy(ex+ey)2)2=(e2xy(ex+ey)2)................(5)

From (4) and (5) we get,

rt-s2 = (e2xy(ex+ey)2)-(e2xy(ex+ey)2)=0

Hence proved rt - s2= 0

shaalaa.com
Review of Complex Numbers‐Algebra of Complex Number
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.