Advertisements
Advertisements
प्रश्न
If x = 4a2 + b2 - 6ab; y = 3b2 - 2a2 + 8ab and z = 6a2 + 8b2 - 6ab find: x + y + z
उत्तर
x = 4a2 + b2 - 6ab
y = 3b2 - 2a2 + 8ab
z = 6a2 + 8b2 - 6ab
x + y + z
= 4a2 + b2 - 6ab + 3b2 - 2a2 + 8ab + 6a2 + 8b2 - 6ab
= 4a2 - 2a2 + 6a2 + b2 + 3b2 + 8b2 - 6ab + 8ab - 6ab
= 10a2 - 2a2 + 12b2 - 12ab + 8ab
= 8a2 + 12b2 - 4ab
APPEARS IN
संबंधित प्रश्न
Subtract: 4x from 8 - x
Subtract – 5a2 – 3a + 1 from the sum of 4a2 + 3 – 8a and 9a – 7.
Copy and complete the following multi-plication:
2a - b + 3c
× 2a - 4b
Copy and complete the following multiplication:
4x3 − 10x2 + 6x − 8
× 3 + 2x − x2
Multiply: 2mnpq, 4mnpq and 5 mnpq
Multiply: x3 - 3y3 and 4x2y2
Simplify: `"y"/4 +"3y"/5`
Simplify: `"3y"/4 -"y"/5`
Simplify: `"m"/5 - "m - 2"/3 + "m"`
Simplify: `("y"/6 + "2y"/3) div ("y" + ("2y" - 1)/3)`