Advertisements
Advertisements
Question
If x = 4a2 + b2 - 6ab; y = 3b2 - 2a2 + 8ab and z = 6a2 + 8b2 - 6ab find: x + y + z
Solution
x = 4a2 + b2 - 6ab
y = 3b2 - 2a2 + 8ab
z = 6a2 + 8b2 - 6ab
x + y + z
= 4a2 + b2 - 6ab + 3b2 - 2a2 + 8ab + 6a2 + 8b2 - 6ab
= 4a2 - 2a2 + 6a2 + b2 + 3b2 + 8b2 - 6ab + 8ab - 6ab
= 10a2 - 2a2 + 12b2 - 12ab + 8ab
= 8a2 + 12b2 - 4ab
APPEARS IN
RELATED QUESTIONS
Find the excess of 4m2 + 4n2 + 4p2 over m2+ 3n2 – 5p2
Subtract the sum of 3a2 – 2a + 5 and a2 – 5a – 7 from the sum of 5a2 -9a + 3 and 2a – a2 – 1
If x = 4a2 + b2 - 6ab; y = 3b2 - 2a2 + 8ab and z = 6a2 + 8b2 - 6ab find: x - y - z
Multiply: 5x + 2y and 3xy
Evaluate: (3x - 2y)(4x + 3y) (8x - 5y)
Evaluate: (a + 1)(a2 - a + 1) and (a - 1)(a2 + a + 1)
Multiply: x2 + 5yx - 3y2 and 2x2y
Simplify: `"3y"/4 -"y"/5`
Simplify: `"3a"/8 + "4a"/5 - ("a"/2 + "2a"/5)`
Simplify: `"x" + "x"/2 + "x"/3`