Advertisements
Advertisements
Question
If x = 4a2 + b2 - 6ab; y = 3b2 - 2a2 + 8ab and z = 6a2 + 8b2 - 6ab find: x - y - z
Solution
x = 4a2 + b2 - 6ab
y = 3b2 - 2a2 + 8ab
z = 6a2 + 8b2 - 6ab
x - y - z
= (4a2 + b2 - 6ab) - (3b2 - 2a2 + 8ab) - (6a2 + 8b2 - 6ab)
= 4a2 + b2 - 6ab - 3b2 + 2a2 - 8ab - 6a2 - 8b2 + 6ab
= 4a2 - 2a2 - 6a2 + b2 - 3b2 - 8b2 - 6ab - 8ab + 6ab
= 6a2 - 6a2 + b2 - 11b2 - 14ab + 6ab
= - 10b2 - 8ab
APPEARS IN
RELATED QUESTIONS
Subtract: 4p + p2 from 3p2 - 8p
Subtract: 2x2 - 7xy - y2 from 3x2 - 5xy + 3y2
Subtract: a2 - 3ab - 6b2 from 2b2 - a2 + 2ab
Subtract: 6m3 + 4m2 + 7m - 3 from 3m3 + 4
Simplify: 2(x - y) - (x - 8)
Copy and complete the following multi-plication:
6 - 3x + 2x2
× 1 + 5x - x2
Multiply: a3 - 4ab and 2a2b
Simplify: `"3y"/4 -"y"/5`
Simplify: `"k"/2 + "k"/3 + "2k"/5`
Simplify: `(2"p" + "p"/7) div ("9p"/10 + "4p")`