Advertisements
Advertisements
प्रश्न
If x = 4a2 + b2 - 6ab; y = 3b2 - 2a2 + 8ab and z = 6a2 + 8b2 - 6ab find: x - y - z
उत्तर
x = 4a2 + b2 - 6ab
y = 3b2 - 2a2 + 8ab
z = 6a2 + 8b2 - 6ab
x - y - z
= (4a2 + b2 - 6ab) - (3b2 - 2a2 + 8ab) - (6a2 + 8b2 - 6ab)
= 4a2 + b2 - 6ab - 3b2 + 2a2 - 8ab - 6a2 - 8b2 + 6ab
= 4a2 - 2a2 - 6a2 + b2 - 3b2 - 8b2 - 6ab - 8ab + 6ab
= 6a2 - 6a2 + b2 - 11b2 - 14ab + 6ab
= - 10b2 - 8ab
APPEARS IN
संबंधित प्रश्न
Subtract: 4x2 - 5x2y + y2 from - 3y2 + 5xy2 - 7x2 - 9x2y
What must be added to 2a3 + 5a – a2 – 6 to get a2 – a – a3 + 1?
The perimeter of a rectangle is 28x3+ 16x2 + 8x + 4. One of its sides is 8x2 + 4x. Find the other side
The perimeter of a triangle is 14a2 + 20a + 13. Two of its sides are 3a2 + 5a + 1 and a2 + 10a – 6. Find its third side.
If m = 9x2 - 4xy + 5y2 and n = - 3x2 + 2xy - y2 find: 2m - n
Multiply: - 3m2n + 5mn - 4mn2 and 6m2n
Copy and complete the following multi-plication:
9x + 5y
× - 3xy
Simplify: `"4a"/7 + "2a"/3 - "a"/7`
Simplify: `"3y"/5 - "y + 2"/2`
Simplify: `(5 ("x" - 4))/3 + (2(5x - 3))/5 + (6(x - 4))/7`