Advertisements
Advertisements
प्रश्न
If x – y = 13 and xy = 28, then find x2 + y2.
उत्तर
Given, x – y = 13 and xy = 28
Since, (x – y)2 = x2 + y2 – 2xy ...[Using the identity, (a – b)2 = a2 + b2 – 2ab]
∴ (13)2 = x2 + y2 – 2 × 28
⇒ x2 + y2 = (13)2 + 56
⇒ x2 + y2 = 169 + 56
⇒ x2 + y2 = 225
APPEARS IN
संबंधित प्रश्न
Expand (2p − 3q)2
Expand `("x"-2/"x")^2`
Show that (m – n)2 + (m + n)2 = 2(m2 + n2)
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
y2 – 14y + 49
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
p2 – 2p + 1
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
4a2 – 4ab + b2
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
p2y2 – 2py + 1
Factorise the following.
y2 – 2y – 15
Factorise the following.
x2 + 4x – 77
Subtract b(b2 + b – 7) + 5 from 3b2 – 8 and find the value of expression obtained for b = – 3.