हिंदी

If x1, x2, ..., xn are n values of a variable X and y1, y2, ..., yn are n values of variable Y such that yi = axi + b; i = 1, 2, ..., n, then write Var(Y) in terms of Var(X). - Mathematics

Advertisements
Advertisements

प्रश्न

If x1x2, ..., xn are n values of a variable X and y1y2, ..., yn are n values of variable Y such that yi = axi + bi = 1, 2, ..., n, then write Var(Y) in terms of Var(X).

 

उत्तर

\[\text{ Var } \left( X \right) = \frac{\sum \left( x_i - \bar{X} \right)^2}{n}\]
\[\text { Var } \left( Y \right) = \frac{\sum \left( y_i - \bar{Y} \right)^2}{n}\]

We have: \[y_i = a x_i + b\]
\[ \bar{y} = \frac{\sum y_i}{n} = \frac{a\sum x_i + nb}{n} = a \bar{X} + b\]

\[\text{ Var } \left( Y \right) = \frac{\sum\nolimits_{} \left( a x_i + b - a \bar{X} - b \right)^2}{n} = \frac{\sum \left( a x_i - a \bar{X} \right)^2}{n} = a^2 \frac{\sum \left( x_i - \bar{X} \right)^2}{n} = a^2 \text{ Var } \left( X \right)\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.8 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.8 | Q 3 | पृष्ठ ४९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Table below shows the frequency f with which 'x' alpha particles were radiated from a diskette 

x : 0 1 2 3 4 5 6 7 8 9 10 11 12
f : 51 203 383 525 532 408 273 139 43 27 10 4 2

Calculate the mean and variance.

 

 

Write the variance of first n natural numbers.

 

If a variable X takes values 0, 1, 2,..., n with frequencies nC0nC1nC2 , ... , nCn, then write variance X.


Let x1x2, ..., xn be values taken by a variable X and y1y2, ..., yn be the values taken by a variable Y such that yi = axi + bi = 1, 2,..., n. Then,


If two variates X and Y are connected by the relation \[Y = \frac{a X + b}{c}\] , where abc are constants such that ac < 0, then

 

Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59


Calculate variance of the following data:

Class interval Frequency
4 – 8 3
8 – 12 6
12 – 16 4
16 – 20 7

Mean `(barx) = (f_ix_i)/(f_i) = (3 xx 6 + 6 xx 10 + 4 xx 14 + 7 xx 18)/20` = 13


Calculate mean, variation and standard deviation of the following frequency distribution:

Classes Frequency
1 – 10 11
10 – 20 29
20 – 30 18
30 – 40 4
40 – 50 5
50 – 60 3

Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then variance of 4, 8, 10, 12, 16, 34 will be ______.


Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is ______.


Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______.


The following information relates to a sample of size 60 `sumx^2` = 18000 and `sumx` = 960, then the variance is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×