हिंदी

Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______.

विकल्प

  • 8.25

  • 6.5

  • 3.87

  • 2.87

MCQ
रिक्त स्थान भरें

उत्तर

Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is 8.25.

Explanation:

First 10 positive integers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

On multiplying each number by – 1, we get

– 1, – 2, – 3, – 4, – 5, – 6, – 7, – 8, – 9, – 10

On adding 1 to each of the number, we get

0, – 1, – 2, – 3, – 4, – 5, – 6, – 7, – 8, – 9

∴ `sumx_i` = 0 – 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9

= – 45

And `sumx_i^2 = 0^2 + (-1)^2 + (-2)^2 + (-3)^2 + (-4)^2 + ... + (-9)^2`

= `(9 xx 10 xx 19)/6`

= 285   .....`[because sumn^2 = (n(n + 1)(2n + 1))/6]`

∴  S.D. = `sqrt((sumx_i^2)/N - ((sumx_i^2)/N)^2`

= `sqrt(285/10 - ((-45)/10)^2`

= `sqrt(285/10 - 2025/100) - sqrt((2850 - 2025)/100`

= `sqrt(8.25)`

∴ Variance = (S.D.)2

= `(sqrt(8.25))^2`

= 8.25

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Exercise [पृष्ठ २८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 15 Statistics
Exercise | Q 36 | पृष्ठ २८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Table below shows the frequency f with which 'x' alpha particles were radiated from a diskette 

x : 0 1 2 3 4 5 6 7 8 9 10 11 12
f : 51 203 383 525 532 408 273 139 43 27 10 4 2

Calculate the mean and variance.

 

 

Write the variance of first n natural numbers.

 

If x1x2, ..., xn are n values of a variable X and y1y2, ..., yn are n values of variable Y such that yi = axi + bi = 1, 2, ..., n, then write Var(Y) in terms of Var(X).

 

If a variable X takes values 0, 1, 2,..., n with frequencies nC0nC1nC2 , ... , nCn, then write variance X.


Let x1x2, ..., xn be values taken by a variable X and y1y2, ..., yn be the values taken by a variable Y such that yi = axi + bi = 1, 2,..., n. Then,


If two variates X and Y are connected by the relation \[Y = \frac{a X + b}{c}\] , where abc are constants such that ac < 0, then

 

Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59


Calculate variance of the following data:

Class interval Frequency
4 – 8 3
8 – 12 6
12 – 16 4
16 – 20 7

Mean `(barx) = (f_ix_i)/(f_i) = (3 xx 6 + 6 xx 10 + 4 xx 14 + 7 xx 18)/20` = 13


Calculate mean, variation and standard deviation of the following frequency distribution:

Classes Frequency
1 – 10 11
10 – 20 29
20 – 30 18
30 – 40 4
40 – 50 5
50 – 60 3

Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then variance of 4, 8, 10, 12, 16, 34 will be ______.


Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is ______.


The following information relates to a sample of size 60 `sumx^2` = 18000 and `sumx` = 960, then the variance is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×