Advertisements
Advertisements
प्रश्न
If y = x3 – x2 + x – 1 calculate the values of y for x = 0, 1, 2, 3, 4, 5 and form the forward differences table
उत्तर
Given y = x3 – x2 + x – 1
When x = 0, y = –1
When x = 1
y = 1 – 1 + 1 – 1 = 0
When x = 2
y = 8 – 4 + 2 – 1 = 5
For x = 0, 1, 2, 3, 4, 5
When x = 3
y = 27 – 9 + 3 – 1 = 20
When x = 4
y = 64 – 16 + 4 – 1 = 51
When x = 5
y = 125 – 25 + 5 – 1 = 104
x | y | `Delta_y` | `Delta^2y` | `Delta^3y` | `Delta^4y` | `Delta^5y` |
0 | – 1 | |||||
1 | ||||||
1 | 0 | 4 | ||||
5 | 6 | |||||
2 | 5 | 10 | 0 | |||
15 | 6 | 0 | ||||
3 | 20 | 16 | 0 | |||
31 | 6 | |||||
4 | 51 | 22 | ||||
53 | ||||||
5 | 104 |
APPEARS IN
संबंधित प्रश्न
If f(x) = x2 + 3x than show that Δf(x) = 2x + 4
Find the missing entries from the following.
x | 0 | 1 | 2 | 3 | 4 | 5 |
y = f(x) | 0 | - | 8 | 15 | - | 35 |
Choose the correct alternative:
Δ2y0 =
Choose the correct alternative:
If h = 1, then Δ(x2) =
Choose the correct alternative:
If m and n are positive integers then Δm Δn f(x)=
Choose the correct alternative:
If ‘n’ is a positive integer Δn[Δ-n f(x)]
Choose the correct alternative:
E f(x) =
Choose the correct alternative:
∇ ≡
Prove that (1 + Δ)(1 – ∇) = 1
Prove that EV = Δ = ∇E