हिंदी

In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______. -

Advertisements
Advertisements

प्रश्न

In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.

विकल्प

  • 5π6

  • π6

  • π4

  • 3π4

MCQ
रिक्त स्थान भरें

उत्तर

In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to π6̲.

Explanation:

Given, in ΔPQR,

3 sin P + 4 cos Q = 6   ...(i)

and 4 sin Q + 3 cos P = 1  ...(ii)

On squaring and adding the equations (i) and (ii), we get

9 (sin2 P + cos2 P) + 16 (sin2 Q + cos2 Q) + 2 × 3 × 4 (sin P cos Q + sin Q cos P) = 37

24 [sin (P + Q)] = 37 – 25

sin (P + Q) = 12

Since, P and Q are angles of ΔPQR.

0° < P, Q < 180°

P + Q = 30° or 150°

R = 150° or 30°   ...[respectively]

Hence, two cases arise here.

Case I When R = 150°,

P + Q = 30°

0 < P, Q < 30°

sinP<12,cosQ<1

3sinP+4cosQ<32+4

3sinP+4cosQ<112<6

3 sin P + 4 cos Q = 6, which is not possible.

Case II When R = 30°,

Hence R = 30° is the only possibility.

shaalaa.com
Trigonometric Functions of Allied Angels
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.