Advertisements
Advertisements
Question
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
Options
`(5π)/6`
`π/6`
`π/4`
`(3π)/4`
Solution
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to `underlinebb(π/6)`.
Explanation:
Given, in ΔPQR,
3 sin P + 4 cos Q = 6 ...(i)
and 4 sin Q + 3 cos P = 1 ...(ii)
On squaring and adding the equations (i) and (ii), we get
9 (sin2 P + cos2 P) + 16 (sin2 Q + cos2 Q) + 2 × 3 × 4 (sin P cos Q + sin Q cos P) = 37
`\implies` 24 [sin (P + Q)] = 37 – 25
`\implies` sin (P + Q) = `1/2`
Since, P and Q are angles of ΔPQR.
0° < P, Q < 180°
`\implies` P + Q = 30° or 150°
`\implies` R = 150° or 30° ...[respectively]
Hence, two cases arise here.
Case I When R = 150°,
`\implies` P + Q = 30°
`\implies` 0 < P, Q < 30°
`\implies` `sin P < 1/2, cos Q < 1`
`\implies` `3 sin P + 4 cos Q < 3/2 + 4`
`\implies` `3 sin P + 4 cos Q < 11/2 < 6`
`\implies` 3 sin P + 4 cos Q = 6, which is not possible.
Case II When R = 30°,
Hence R = 30° is the only possibility.