हिंदी

In an A.P., the Sum of First Ten Terms is −150 and the Sum of Its Next Ten Terms is −550. Find the A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

In an A.P., the sum of first ten terms is −150 and the sum of its next ten terms is −550. Find the A.P.

योग

उत्तर

Here, we are given  S10 = -150  and sum of the next ten terms is −550.

Let us take the first term of the A.P. as a and the common difference as d.

So, let us first find a10. For the sum of first 10 terms of this A.P,

First term = a

Last term = a10

So, we know,

an = a + (n-1)d

For the 10th term (n = 10),

a10 = a + (10 -1)d 

      = a + 9d

So, here we can find the sum of the n terms of the given A.P., using the formula,  `S_n = (n/2) (a + l) `

Where, a = the first term

l = the last term

So, for the given A.P,

`S_10 = (10/2 ) (a +a + 9d)`

-150 = 5 (2a + 9d)

-150 = 10a  + 45 d

   `a = (-150-45d)/10`                           ................(1)

Similarly, for the sum of next 10 terms (S10),

First term = a11

Last term = a20

For the 11th term (n = 11),

a11 = a + (11 - 1) d

      = a + 19d

For the 20th term (n = 20),

a20 = a + (20 - 1) d

      = a + 19d

So, for the given A.P,

`S_10 = (10/2) ( a + 10d + a + 19 d)`

-550 = 5(2a + 29d)

-550 = 10a + 145d

   `a = (-550-145d)/10`                   ...............(2) 

Now, subtracting (1) from (2),

    a-a=`((-550-145d)/10) - ((-150-45d)/10)`

     `0 = (-550-145d+150+45d)/10`

      0 = -400 -100d

100d = -400

     d = -4 

Substituting the value of in (1)

`a = (-150-45(-4))/10`

   `=(-150+180)/10`

   `=30/10`

    = 3

So, the A.P. is 3,-1,-5,-9,... with a=3,d=-4 .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.6 | Q 33 | पृष्ठ ५२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×