Advertisements
Advertisements
प्रश्न
The number of terms of the A.P. 3, 7, 11, 15, ... to be taken so that the sum is 406 is
विकल्प
5
10
12
14
20
उत्तर
In the given problem, we have an A.P. 3,7,11,15,....
Here, we need to find the number of terms n such that the sum of n terms is 406.
So here, we will use the formula,
`S_n = n/2[2a + (n-1)d ]`
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
The first term (a) = 3
The sum of n terms (Sn) = 406
Common difference of the A.P. (d) = `a_2 - a_1`
= 7 - 3
= 4
So, on substituting the values in the formula for the sum of n terms of an A.P., we get,
`406 = n/2 [ 2(3) + (n-1) (4) ] `
`406 = (n/2) [ 6 +(4n- 4)]`
`406 = (n/2) [ 2 + 4n]`
`406 = n + 2n^2`
So, we get the following quadratic equation,
`2n^2 + n - 406 = 0`
On solving by splitting the middle term, we get,
`2n^2 - 28n + 29n - 406 = 0`
`2n ( n- 14) - 29 (n-14)= 0`
`(2n - 29 ) ( n- 14) = 0`
Further,
2n - 29 = 0
`n = 29/2`
Or,
n - 14 = 0
n = 14
Since, the number of terms cannot be a fraction, the number of terms (n) is n = 14
APPEARS IN
संबंधित प्रश्न
Find four numbers in A.P. whose sum is 20 and the sum of whose squares is 120
If the 3rd and the 9th terms of an AP are 4 and –8 respectively, which term of this AP is zero?
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
The first and the last terms of an A.P. are 34 and 700 respectively. If the common difference is 18, how many terms are there and what is their sum?
Choose the correct alternative answer for the following question .
15, 10, 5,... In this A.P sum of first 10 terms is...
In an A.P. the first term is 8, nth term is 33 and the sum to first n terms is 123. Find n and d, the common differences.
Mrs. Gupta repays her total loan of Rs. 1,18,000 by paying installments every month. If the installments for the first month is Rs. 1,000 and it increases by Rs. 100 every month, What amount will she pays as the 30th installments of loan? What amount of loan she still has to pay after the 30th installment?
The sum of first 15 terms of an A.P. is 750 and its first term is 15. Find its 20th term.
Solve for x : 1 + 4 + 7 + 10 + … + x = 287.
Find the sum of natural numbers between 1 to 140, which are divisible by 4.
Activity: Natural numbers between 1 to 140 divisible by 4 are, 4, 8, 12, 16,......, 136
Here d = 4, therefore this sequence is an A.P.
a = 4, d = 4, tn = 136, Sn = ?
tn = a + (n – 1)d
`square` = 4 + (n – 1) × 4
`square` = (n – 1) × 4
n = `square`
Now,
Sn = `"n"/2["a" + "t"_"n"]`
Sn = 17 × `square`
Sn = `square`
Therefore, the sum of natural numbers between 1 to 140, which are divisible by 4 is `square`.