हिंदी

In the Following Determine the Set of Values of K for Which the Given Quadratic Equation Has Real Roots: 4x2 - 3kx + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In the following determine the set of values of k for which the given quadratic equation has real roots:

4x2 - 3kx + 1 = 0

उत्तर

The given quadric equation is 4x2 - 3kx + 1 = 0, and roots are real

Then find the value of k.

Here, a = 4, b = -3k and c = 1

As we know that D = b2 - 4ac

Putting the value of a = 4, b = -3k and c = 1

= (-3k)2 - 4 x (4) x (1)

= 9k2 - 16

The given equation will have real roots, if D ≥ 0

⇒ 9k2 - 16 ≥ 0

⇒ 9k2 ≥ 16

⇒ k2 ≥ 16/9

`rArrk>=sqrt(16/9)` or `k<=-sqrt(16/9)`

⇒ k ≥ 4/3 Or k ≤ -4/3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.6 | Q 16.3 | पृष्ठ ४२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×