Advertisements
Advertisements
प्रश्न
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x5 - a2x3 + 2x + a + 1.
उत्तर
Let p(x) = x5 - a2x3 + 2x + a + 1
Since (x -a) in a factor of p(x), so p(a) = 0.
Put x = a in equation (i) we get
p(a) = (a)5 - a2 (a)3 + 2a + a + 1 = 0
= a5 - a2 x a3 + 3a + 1 = 0
= a5 - a5 + 3a + 1 = 0
= 3a + 1 = 0
⇒ 3a = -1
⇒ a = `-(1)/(3)`.
APPEARS IN
संबंधित प्रश्न
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 – 23x – 30
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Using the factor theorem, show that (x - 2) is a factor of `x^3 + x^2 -4x -4 .`
Hence factorise the polynomial completely.
If the polynomials ax3 + 4x2 + 3x - 4 and x3 - 4x + a leave the same remainder when divided by (x - 3), find the value of a.
In the following two polynomials. Find the value of ‘a’ if x + a is a factor of each of the two:
x3 + ax2 - 2x + a + 4
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x3 + 2ax2 + ax - 1
f 2x3 + ax2 – 11x + b leaves remainder 0 and 42 when divided by (x – 2) and (x – 3) respectively, find the values of a and b. With these values of a and b, factorize the given expression.
The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
(x – 2) is a factor of ______.
For the polynomial x5 – x4 + x3 – 8x2 + 6x + 15, the maximum number of linear factors is ______.